ARSINE

1. PERFORMANCE

1) Measuring range Number of pump strokes 1 $(100 \text{m} \ell)$ 2 $(200 \text{m} \ell)$ 2) Sampling time 1 $(100 \text{m} \ell)$ 2 $(200 \text{m} \ell)$ 3) Detectable limit 2 $(0.02 \text{ ppm} (200 \text{m} \ell))$

4) Shelf life : 2 years 5) Operating temperature : $0 \sim 40 \,^{\circ}\text{C}$

6) Reading : Although the scale of this tube is calibrated based on Phosphine at 1 pump

stroke, the sensitivity of Arsine is completely same.

7) Colour change : Pale yellow → Pink

2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 10% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Mercury chloride (II), Hydrogen chloride is produced and PH indicator is discoloured. $AsH_3 + HgCI_2 \rightarrow As(HgCI)_3 + HCI$

4. CALIBRATION OF THE TUBE

STANDARD GAS CYLINDER METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	Interference	Coexistence
Hydrogen selenide	Similar stain is produced.	Higher readings are given.
Mercaptans	"	"
Hydrogen sulphide	"	"
Hydrogen cyanide	Whole reagent is changed to Red.	"
Sulphur dioxide	Whole reagent is changed toPale red, but Purplish red stainindicates Arsine concentration.	"

(NOTE)

This tube scale is calibrated based on Phosphine and the same scale is available for Arsine.

When the concentration is below 0.5 ppm, 2 pump strokes can be used to determine the lower concentration.

Following formula is available for the actual concentration.

Actual concentration = $1/2 \times$ Reading value