# **HYDROGEN CHLORIDE**



#### 1. PERFORMANCE

1) Measuring range  $\begin{array}{ccc} \text{1.4-40 ppm} & \text{2-20 ppm} & \text{0.4-4 ppm} \\ \text{Number of pump strokes} & 1/2 \left(50 \text{m} \ell\right) & 1 \left(100 \text{m} \ell\right) & 5 \left(500 \text{m} \ell\right) \\ \end{array}$ 

2) Sampling time : 1 minute/1 pump stroke

3) Detectable limit :  $0.2 \text{ ppm} (500 \text{m} \ell)$ 

4) Shelf life : 3 years 5) Operating temperature :  $0 \sim 40 \,^{\circ}\text{C}$ 

6) Reading : Direct reading from the scale calibrated by 1 pump stroke

7) Colour change : Yellowish green→Pink

#### 2. RELATIVE STANDARD DEVIATION

RSD-low: 15% RSD-mid.: 10% RSD-high: 10%

## 3. CHEMICAL REACTION

PH indicator is discoloured by Hydrogen chloride.

## 4. CALIBRATION OF THE TUBE

COLOURIMETRY METHOD

## 5. INTERFERENCE AND CROSS SENSITIVITY

| Substance        | ppm        | Interference                                                                                           | Coexistence                               |
|------------------|------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Sulphur dioxide  | 200        | Similar pale stain is produced but may be distinguished from clear discoloration by Hydrogen chloride. | The accuracy of readings is not affected. |
| Nitric acid      | High conc. | "                                                                                                      | "                                         |
| Nitrogen dioxide | 100        | "                                                                                                      | "                                         |
| Chlorine         |            | Similar stain is produced.                                                                             | Higher readings are given.                |

#### (NOTE)

When the concentration is below 2 ppm, 5 pump strokes can be used to determine the lower concentration. Following formula is available for the actual concentration.

Actual concentration = Reading value  $\times \frac{1}{\text{Number of strokes}}$