# **GENERAL HYDROCARBONS**



#### 1. PERFORMANCE

1) Measuring range : 50-1,400 ppm (as n-Hexane)

Number of pump strokes  $1(100\text{m}\ell)$ 

2 pump strokes (200ml) are required for Kerosine and Mineral tupentine

determination.

2) Sampling time : 1.5 minutes/1 pump stroke

3) Detectable limit : 5 ppm4) Shelf life : 2 years5) Operating temperature  $: 0 \sim 40 \,^{\circ}\text{C}$ 

6) Temperature compensation : Necessary (refer to "Table 2. Temperature CorrectionTable")
7) Reading : Direct reading from the scale calibrated by 1 pump stroke

8) Colour change : Orange → Yellowish green

### 2. RELATIVE STANDARD DEVIATION

RSD-low: 10 % RSD-mid.: 5 % RSD-high: 5 % (Controlled on n-Hexane)

## 3. CHEMICAL REACTION

Chromium oxide is reduced.

 $CH_3 (CH_2)_4 CH_3 + Cr^{6+} + H_2SO_4 \rightarrow Cr^{3+}$ 

#### 4. CALIBRATION OF THE TUBE

GAS CHROMATOGRAPHY

# 5. INTERFERENCE AND CROSS SENSITIVITY

| Substance             | Interference | Coexistence                                                                            |
|-----------------------|--------------|----------------------------------------------------------------------------------------|
| Aromatic hydrocarbons |              | The bottom of the discoloured layer is changed to Black and higher readings are given. |

It has no influence on readings even if Alcohols, Esters or Ketones each co-exists up to 6%. (NOTE)

1) Determine the concentration of objective gas by multiplication with the figure shown in Table 1 after temperature correction.

Table 1 Coefficient Chart

| Name of Gas | Figure Name of Gas |             | Figure |
|-------------|--------------------|-------------|--------|
| Isobutane   | 0.8                | Heptane     | 1.5    |
| Pentane     | 0.8                | Octane      | 2.0    |
| n-Hexane    | 1.0                | Cyclohexane | 1.0    |

| Table.2 T | emperatur | n Table (20 ℃ |      | standard) |      |
|-----------|-----------|---------------|------|-----------|------|
| Readings  | 0℃        | 10℃           | 20℃  | 30℃       | 40°C |
| 1400      | 1630      | 1530          | 1400 | 1270      | 1180 |
| 1200      | 1400      | 1320          | 1200 | 1090      | 1010 |
| 1000      | 1170      | 1100          | 1000 | 910       | 840  |
| 800       | 930       | 870           | 800  | 720       | 670  |
| 600       | 700       | 660           | 600  | 550       | 500  |
| 400       | 460       | 430           | 400  | 360       | 330  |
| 200       | 220       | 210           | 200  | 180       | 170  |
| 100       | 100       | 100           | 100  | 100       | 100  |

Unit : ppm

Example) For measuring Heptane at 10 °C of temperature

Reading concentration : 600 ppm Concentration on temperature correction : 660 ppm Concentration of Heptane : 990 ppm

- 2) Measurement of mixed solvents:
- (1) Take 2 pump strokes and use the following conversion graph to measure Kerosene or Mineral turpentine (Mineral spirits).
- (2) After temperature correction for the reading of the gas detector tube with the Table 2, determine the concentration from FIG.1 conversion graph.

Instance)

For measuring mineral turpentine at 40  $^{\circ}$ C Reading Concentration 600 ppm Concentration on temperature correction 500 ppm Concentration of mineral tupentine 16mg/ $\ell$ 



Mineral turpentine (mg/ℓ) FIG.1 Conversion graph